On degenerate interpolation, entropy and extremal problems for matrix Schur functions
نویسندگان
چکیده
منابع مشابه
On Degenerate Interpolation, Entropy and Extremal Problems for Matrix Schur Functions
We consider a general bitangential interpolation problem for matrix Schur functions and focus mainly on the case when the associated Pick matrix is singular (and positive semidefinite). Descriptions of the set of all solutions are given in terms of special linear fractional transformations which are obtained using two quite different approaches. As applications of the obtained results we consid...
متن کاملOn boundary interpolation for matrix valued Schur functions
A number of interpolation problems are considered in the Schur class of p × q matrix valued functions S that are analytic and contractive in the open unit disk. The interpolation constraints are specified in terms of nontangential limits and angular derivatives at one or more (of a finite number of) boundary points. Necessary and sufficient conditions for existence of solutions to these problem...
متن کاملExtremal Graph Problems, Degenerate Extremal Problems, and Supersaturated Graphs
Notation. Given a graph, hypergraph Gn, . . . , the upper index always denotes the number of vertices, e(G), v(G) and χ(G) denote the number of edges, vertices and the chromatic number of G respectively. Given a family L of graphs, hypergraphs, ex(n,L) denotes the maximum number of edges (hyperedges) a graph (hypergraph)Gn of order n can have without containing subgraphs (subhypergraphs) from L...
متن کاملExtremal Problems of Interpolation Theory
We consider problems where one seeks m×m matrix valued H∞ functions w(ξ) which satisfy interpolation constraints and a bound (0.1) w∗(ξ)w(ξ) ≤ ρmin, |ξ| < 1, where the m×m positive semi-definite matrix ρmin is minimal (no smaller than) any other matrix ρ producing such a bound. That is, if (0.2) w∗(ξ)w(ξ) ≤ ρ, |ξ| < 1, and if ρmin − ρ is positive semi-definite, then ρmin = ρ. This is an example...
متن کاملOn a Multi-point Interpolation Problem for Generalized Schur Functions
The nondegenerate Nevanlinna-Pick-Carathéodory-Fejer interpolation problem with finitely many interpolation conditions always has infinitely many solutions in a generalized Schur class Sκ for every κ ≥ κmin where the integer κmin equals the number of negative eigenvalues of the Pick matrix associated to the problem and completely determined by interpolation data. A linear fractional description...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Equations and Operator Theory
سال: 1998
ISSN: 0378-620X,1420-8989
DOI: 10.1007/bf01194989